On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors
نویسندگان
چکیده
In this paper, a successive supersymmetric rank-1 decomposition of a real higher-order supersymmetric tensor is considered. To obtain such a decomposition, we design a greedy method based on iteratively computing the best supersymmetric rank-1 approximation of the residual tensors. We further show that a supersymmetric canonical decomposition could be obtained when the method is applied to an orthogonally diagonalizable supersymmetric tensor, and in particular, when the order is 2, this method generates the eigenvalue decomposition for symmetric matrices. Details of the algorithm designed and the numerical results are reported in this paper. Copyright q 2007 John Wiley & Sons, Ltd.
منابع مشابه
On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors
Recently the problem of determining the best, in the least-squares sense, rank-1 approximation to a higher-order tensor was studied and an iterative method that extends the wellknown power method for matrices was proposed for its solution. This higher-order power method is also proposed for the special but important class of supersymmetric tensors, with no change. A simplified version, adapted ...
متن کاملRank-1 Tensor Approximation Methods and Application to Deflation
Because of the attractiveness of the canonical polyadic (CP) tensor decomposition in various applications, several algorithms have been designed to compute it, but efficient ones are still lacking. Iterative deflation algorithms based on successive rank-1 approximations can be used to perform this task, since the latter are rather easy to compute. We first present an algebraic rank-1 approximat...
متن کاملBest Rank-One Tensor Approximation and Parallel Update Algorithm for CPD
A novel algorithm is proposed for CANDECOMP/PARAFAC tensor decomposition to exploit best rank-1 tensor approximation. Different from the existing algorithms, our algorithm updates rank-1 tensors simultaneously in-parallel. In order to achieve this, we develop new all-at-once algorithms for best rank-1 tensor approximation based on the Levenberg-Marquardt method and the rotational update. We sho...
متن کاملMultiscale Analysis for Higher-order Tensors
The widespread use of multisensor technology and the emergence of big datasets have created the need to develop tools to reduce, approximate, and classify large and multimodal data such as higher-order tensors. While early approaches focused on matrix and vector based methods to represent these higher-order data, more recently it has been shown that tensor decomposition methods are better equip...
متن کاملSymmetric Tensors and Symmetric Tensor Rank
A symmetric tensor is a higher order generalization of a symmetric matrix. In this paper, we study various properties of symmetric tensors in relation to a decomposition into a symmetric sum of outer product of vectors. A rank-1 order-k tensor is the outer product of k non-zero vectors. Any symmetric tensor can be decomposed into a linear combination of rank-1 tensors, each of them being symmet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 14 شماره
صفحات -
تاریخ انتشار 2007